Laboratory Ventilation and Fume Hood Design (Considerations for Academia)

October 8, 2002
Gary C. Shaver
UNC-Chapel Hill

University of NC in Chapel Hill

- Oldest public University in US
- Founded in 1794
- 328 Buildings over 12 M GSF
- Main campus- 809 Acres

Person Hall

- Built 1794-97
- Grew 2000 → 6000 GSF
- Uses
 - Chapel
 - Physics and Chemistry
 - School of Medicine
 - Pharmacy
 - Archeology
 - Arts
- Sustainable Building

Historic Lab Ventilation Issues

- 1886 Chemistry Dept. Head requested cancellation of laboratory classes due to "poorly ventilated rooms".
 - A new lab addition was promptly built

Historic Lab Ventilation Issues

- 1902- Chem. Department had expanded
 - 100 to 367 students in 16 yrs.
 - Removed ventilation hoods for student space
 - The atmosphere was foul at times

Historic Lab Ventilation Issues

- 1903- Chair of the Dept of Chemistry observes:
 - "...students working in the qualitative laboratory with wet handkerchiefs tied about their faces to remove, in part, the poisonous vapors they must take into their lungs."
 - Disgrace for the State of NC.
- Trustees built a new Chemistry building.

Fast Forward to 2002

- Deteriorating lab buildings
- Substandard health, and safety conditions
- Overcrowding
- Challenge of attracting/retaining quality personnel

Venable Hall-Chemistry

- Built in 1925
- Multiple additions/upgrades
- Outdated
- Replace after 80 years

Student Chem Labs

- Built 1986
- 61K GSF
- Segmented Constant volume system
- Vent. Deficiencies
 - Make up air from roof
 - Controls broke
 - System imbalanced

Consequences of Poor Design

- Poor IAQ
- Door operation problems
- \$400K budgeted for repairs/balancing
- Bids were \$500K
- Over budget; resources diverted

Medical Labs

- Built in 1973
- 116,344 s.f.
- HVAC repairs-\$3.2 M
- Hood capacity exceeded

Consequences of Poor Design

- Demand > Design
- Long repair lead-time
- Hood use curtailed
- Restricts expansion

Existing Hoods

- Poor engineering
 - Adjacent to door/hall

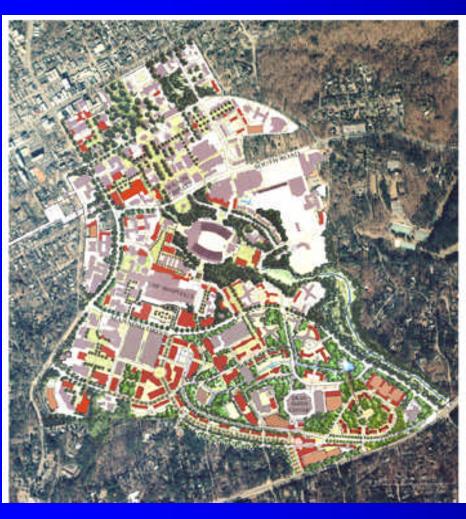
Existing Hoods

- Auxiliary Air
- Poor design
- Untempered air
- Balancing issues

Historical Pattern of Laboratory Expansion

- Growth is constant
- Demand quickly outstrips facilities
- Poor design cannot be quickly remedied
- Systems degrade to critical point then trigger action

Expansion through New Construction and Renovation


- Greatest expansion in University history
- Funded through Bond Appropriations
- State in financial crisis
- Repair funds severely limited

Laboratory Growth in 10 years

- \$500 Million
- 1 Million GSF
- 6 New buildings
- Major renovations

Campus Master Plan Building Infill

- Existing-purple
- New-red
- Add 5.5 M GSF
 - Air intake protection
 - Emergency generators

Evaluating Impacts of Infill

Exhaust Dispersion Study Science Complex

- Model buildings/topo
- Install in wind tunnel
- Discharge CO
- Visualize with smoke
- Evaluate key receptors

Exhaust Dispersion Study

Science Complex

- Combined hood exhausts
- Diesel generators
- Realistic dilution calculations

Laboratory Exhaust Hoods

- Highest energy consumer
- Critical tool for researcher protection
- Poorly understood
- Rapidly changing

Laboratory Exhaust Hoods

- Emphasis on energy savings
- Life cycle cost justification
- Hidden costs health

Conventional vs. Low Flow

- Simple design
- Smaller footprint
- Sufficient dilution exhaust air
- VAV adaptable
- Lower cost

- Deeper
- Lower exhaust volume
- Lower energy use
- Varied complexity
- Higher initial cost
- Safer???

Low Flow Safety & Ergonomic Considerations

- Deeper hoods
 - Inability to reach back of hood
 - Head and torso into hood
- Horizontal sashes user options
 - Full head and torso protection
 - Full body exposure

A Current Perception

"... many investigators are concerned that
"voodoo calculations" are being used as a
way to market a more expensive, less safe
hood with a smaller margin of safety."

Low Flow Designs

Labcrafters Air Sentry

Labconco XStream

Fisher Hamilton Pioneer & Concept (not shown) Barrier LCV

Kewaunee Dynamic

Hood Selection Process

- Review literature
- Review Manufacturers data
- Talk with owners
- Develop bid specifications

Hood Selection Process

- Establish user requirements
 - Sash Type (vertical, horizontal, combo)
 - Sash openings
 - Expected use
- Consider reality (worst case)
- Determine protection levels

High Performance - Low Flow

- How low can you go???
 - Typically 50-60 fpm at face
 - Drafts at face
- Performance Testing
 - ASHRAE 110-95
 - ANSI/AIHA Z9.5 1992
 - Modified ASHRAE

Advances in Challenge Testing

- Obstacles in hood
- Change tracer gas
 - Volume
 - Release point
- Shorter mannequin
- Side drafts (fans)
- Walk-by simulations

High Performance - Low Flow

- Designing to the Standardized Test?
- Test Modifications → Lower performance
 - Humans replace mannequins
 - Lower ejector heights

(see Montana State U. studies with Hutchings/Knutsen)

Hood Engineering for Humans

- Human behavior confounds ideal hood performance
- Consider over design
- Train on proper hood use

Human Factor

- Packed hood
- Covered airfoil

Human Factor

- Hood modifications
 - Air foils removed
 - Added inner shelf
- Exhaust
 - Dampers adjusted

Human Factor

- Sash fully open
- Open waste container
- Lower airfoil removed

Human Factor

- Sash fully open
- Packed hood
- Air flow dynamics?

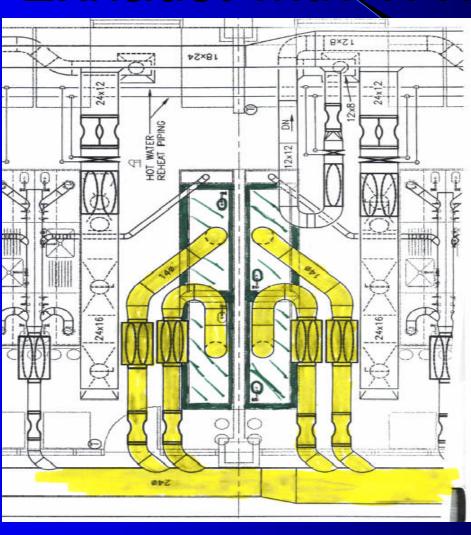
Science Complex Phase I Mechanical

- 10 Exhaust shafts
- 4 Exhaust heat recovery units (2 shafts/unit)
- 130 laboratory exhaust hoods
- Future capacity to add 45 hoods

Hood Selection Process (Science Complex)

- Sash Type Combination
- Typical use
 - Vertical sash down, horizontal sashes open
 - 8 foot hoods, horizontals closed, vertical 18 in.
- Worst case
 - Vertical sash fully open
- Determine protection levels

Hood Selection Process (Science Complex)


- Evaluate as constant volume
- Set flow for restricted opening (100 fpm)
- Will maximum opening pass?
- Consider installed product performance

	*									
Hood Performand	ce Comparison Qເ	uestionnaire-2002								
From: UNC-Chapel HillG	ary Shaver 919-843-7313									
Manufacturer								·		
Technical Contact I	Name-Phone-eMail									
Hoods to consider: 4 fo	ot, 5 foot, 6 foot and 8 fo	oot fume hoods, constan	t volume	(limited by	pass),	combin	ation sasl	1		
Include data for all hoo	ds which will pass the A	ASHRAE standard tests i	n Setups	1 and 2 e	en if th	ney fail	in Setup 3			
						<u></u>				
Standard ASHRAE Test	= ASHRAE 110-1995 WI	th ANSI/AIHA Z9.5 1992 c	riteria for	a Class A	tume F	100a				
		Base Condition Setup 1						Setup 2 (sash only adj	iustmen'	F)
		2000 Containing Columnia						octup 2 (sush only du)		
		Opening size-(vertical					Passes		+	
		sash down, max number	Face	Exhaust	Passes		Modified	g size-(vertical sash	Face	Exhaust
Hood Model (Name and	Exterior Hood	of horizontal panels	Velocity	volume	Standard		Ashrae	op all horizontal	Velocity	
Number)	Dimensions	open) sq.ft.	(fpm)	(cfm)	Ashrae test?*		test?#	pane sq. ft.	(fpm)	(cfm)
· vai · is er /	2	Sportly Squar	(1,511.)	(3.1.1)	AM	Al	10011	pariot 4. III	(1,2.1.1)	(GIIII)
									T	
							_			
AM=as manufactured Al-	as installed									
. =										
* Provide all supporting in	-factory and in-field (as ins	stalled) testing data that de	monstrate	s this hood	perforr	nance.		<u> </u>	\	
# A Modified ASHRAF t	est can take many forms	including: Lowering the ma	nneguin h	eight incre	asing F	IS6 emi	esion rates	, adding boxes into the hood, cr	.03	
								alled conditions and which of yo		
								and demandered and trineries, ye		
Names and Contacts fo	r other large research in	stitutions using each of	the propo	osed hood	model	s.				
										
Hood Model		O11 D	DI #	- 84 - 11						
(Name/number)	Institution	Contact Person	Phone #	eman						
									T	
	ļ		ļ		J					

Summary of Findings

- Advanced hoods reported to:
 - Meet ANSI/AIHA test criteria AM (AI)
 - Horizontal sash open, vertical down
 - Vertical sash 18 inches, horizontal closed
 - Pass/fail at full open sash
 - Use standard and modified ASHRAE 110
 - Installed base limited

Science Complex Hood Exhaust with VAV

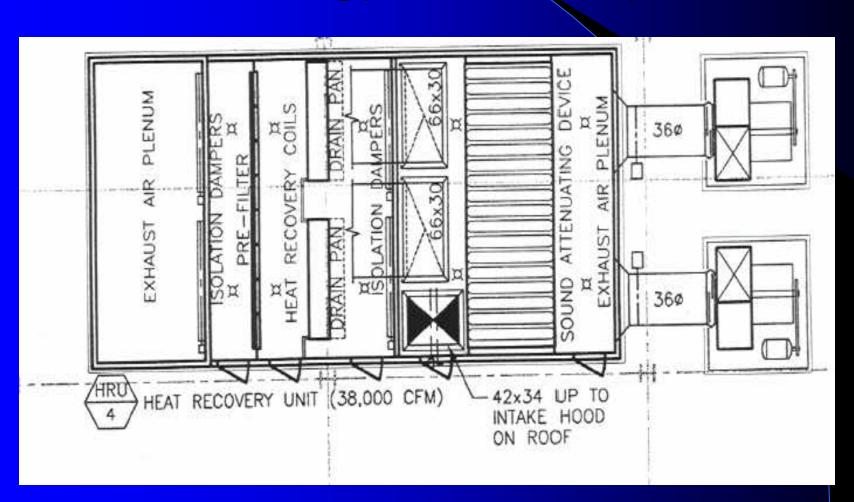
Science Complex Hood Exhaust with VAV

- Noise attenuators dust and debris
- Static pressure losses
- Balancing issues
- Mechanical complexity
- User dependent

VAV Considerations

- All VAVs are not equal in performance
- Diversity may not match design
- Expensive

VAV Considerations


- Payback not always realized
- Commissioning critical
- Some Universities disallow VAV systems

Combined Exhaust (Minimize Stacks)

- Increase Dilution
- Reduce maintenance
- Energy recovery
- Emergency power
- Fan Redundancy (50%)

Combined Exhaust with Energy Recovery

IMC Section 510 Challenge

- Defines hazardous exhaust
- Limits combined exhaust (separate general exhaust)
- Prohibits incompatible mixing
- Fire suppression in duct systems
- Ignores small quantities/high dilutions

IMC Section 510 Challenge

- Alternate M&M
 - NFPA 45 Chapter 6
 - ANSI/AIHA Z9.2 (in revision)
- AIHA Lab Safety Committee position paper
- Code change process in progress (2 yrs)
- Intent exclude laboratories

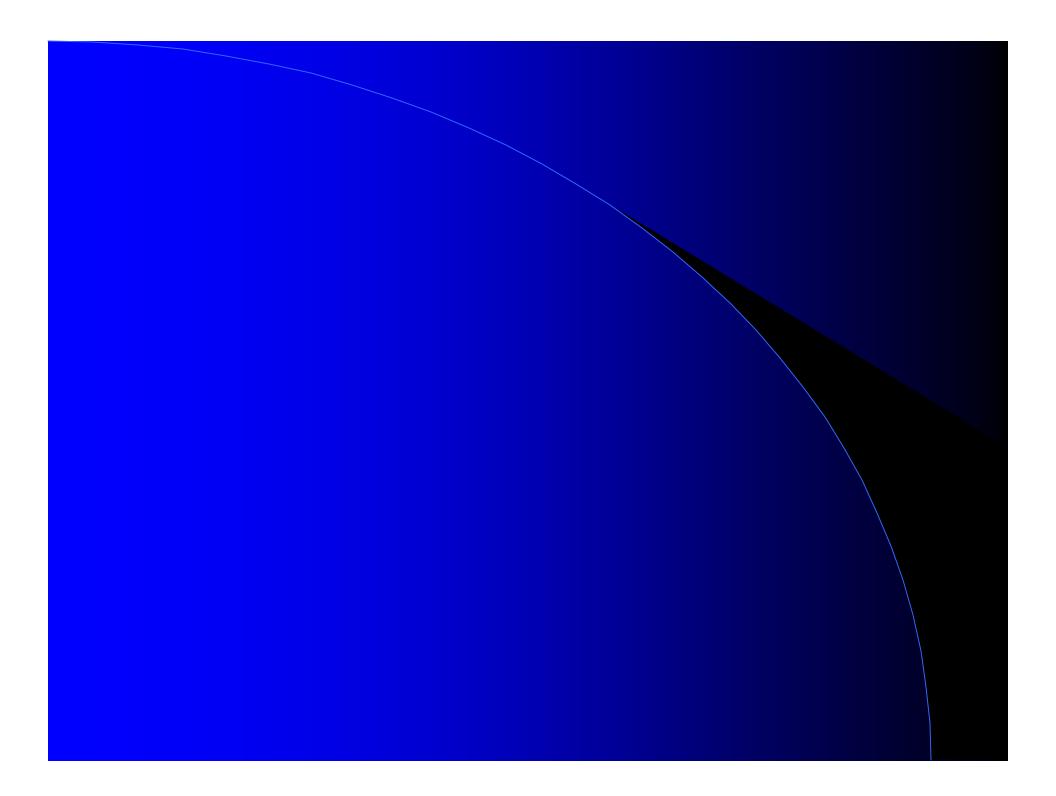
Bidding Wars

- Specifications
 - Incorporate recognized standards
 - Qualifies 3 bidders
 - Precludes bid challenges
 - Long construction delays
- Low bid wins but not necessarily the best!

Lessons Learned on Lab Ventilation

- Keep it simple
- Minimize mechanical parts
- Minimize maintenance
- Maximize flexibility for growth

Lessons Learned on Lab Ventilation


- Hood selection defines
 - Space
 - Mechanical systems
- Hood design is in continuous flux
- Selection impacts next 30+ years
- Maximize safety

Laboratory Exhaust Systems

- High stakes
 - Safety
 - Health
 - Energy
- High first costs
- High operating costs (heating/cooling)
- Incomplete performance picture
- High emotions

In Academia: Learn from a rich past Prepare for the distant future and

Existing Hoods

Hood conversions

- Block supply
- Convert sash to bulletin board